Dark Matter from the littlest galaxies

Gamma-ray insights from ultra-faint dwarfs and IMBHs

Milena Crnogorčević Postdoctoral Fellow Oskar Klein Centre/Stockholm University

ICRC 2025 July 18, 2025

Fornax Dwarf Galaxy, ESO/Sky Survey 2

Target 1: dSphs

- → most dark-matter dominated systems known in the Universe
- → 61 dwarf satellites identified so far in the Milky Way, more on the horizon
- → nearby (furthest 460 kpc), some within single-digit kpc
- → not much astrophysical background, inactive

Target 1: dSphs

Dwarf Spheroidal Galaxies

DM γ -ray flux

 $\frac{d\Phi}{dE}$

astrophysics J-factor

Dark matter content determined from stellar velocity dispersion

- **Classical dwarfs**: spectra for several thousand stars
- **Ultra-faint dwarfs**: spectra for fewer than 100 stars

particle physics

$$\frac{\langle \sigma v \rangle}{2M_{DM}^2} \sum B_i \frac{dN_{\gamma}}{dE}$$

J-factors [McDaniel+ 2024]

Combined dSph Analyses

[Fermi-LAT Collaboration '17]

[Fermi-LAT Collaboration '21]

[McDaniel+ '24]

Shaded regions: blank-field analysis

Think: $\sqrt{TS} \sim \sigma$

Future of dSph DM searches

How many dwarf galaxies do we *really* need?

How many dwarf galaxies do we *really* need? Maybe just one, but a good one?

Ursa Major III

[MC & Linden '24]

Ursa Major III

[MC & Linden '24]

Ursa Major III

[Discovery: Smith+ 2023]
[J-factor: Errani+ 2023]

- → Unstable unless large DM content
- \rightarrow Nearby (~10 kpc)
- → Strong constraints on DM annihilation
- → Confirming the dark matter density requires deeper optical surveys

Target 2: dwarf AGN

Target 2: dwarf AGN

- \rightarrow host intermediate-mass black holes (IMBHs), 10^4 10^6 M $_{\odot}$
- → missing link in BH mass spectrum
- → preserve signatures of BH seed formation
- → enhanced dark matter density around IMBHs
- → but, multiple **y**-ray production mechanisms...

Alert: astrophysical backgrounds

Classical ways to produce γ -rays:

- → Accretion-related processes: Inverse Compton from corona/disk
 - → Misaligned jets: Reduced Doppler boosting → softer spectra
 - → Cosmic-ray interactions: Star formation/supernova activity
 - → AGN-driven outflows: Shocks in interstellar medium

New ways to produce γ -rays:

→ Dark matter annihilation: Enhanced density around IMBHs

Multiple mechanisms likely contribute: requires multiwavelength approach to disentangle

Dwarf AGN sample

- → 74 X-ray selected AGN in dwarf galaxies within 200 Mpc (eRASS1)
- → ULXs, X-ray binaries, background AGN excluded
- ^{180°} → ~50% are off-nuclear displaced from galaxy centers
 - → IMBH masses estimated via M--M $_{\star}$ scaling relations (10⁴-10⁶ M $_{\odot}$)
 - → DESI found 2,444 dwarf AGN but leaves too few blank fields for statistical calibration, + contamination from SF

(Sacchi et al. 2024)

Fermi Analysis

- Standard *Fermi* analysis
- 15 years of Fermi data
- 500 MeV to 500 GeV
- 4FGL-DR4 Source catalog
- Construct TS profiles assuming power law
- No $>5\sigma$ detection for any of the 74 sources

Joint Likelihood Analysis Results

- → Combined analysis of all 74 dwarf AGN
- \rightarrow Soft spectral excess at $\Gamma \sim 3.5$
- \rightarrow Approximately $\sim 3\sigma$ above the null hypothesis (assuming Gaussian error propagation)
- → Weighted by M_{IMBH}/d²
- → Soft excess remains robust down to 100 MeV
- → Spectral shape consistent across energy ranges
- → Not purely instrumental artifact
- → Suggests potential intrinsic astrophysical origin

But, should have we seen something?

→ Applied BL Lac scaling (e.g., Li+ 2013):

$$\log L_{\gamma} = (0.59 \pm 0.05) \log L_X + (17.55 \pm 2.31)$$

- → Most predicted fluxes just below *Fermi* threshold
- → Expected some scatter above detection limit

No firm detections suggest different physics

Dark Matter constraints

- → DM spike parameters randomly assigned from EAGLE simulation results to the IMBH AGN with similar masses (Aschersleben et al. 2024)
- → Model-dependent results depend on assumed spike profiles (NFW) and IMBH-halo relationships
- → Currently exploring the robustness of these assumptions

Conclusions

- → Ultra-faint dSphs: Ursa Major III sets the strongest individual constraints on DM annihilation from any single dwarf galaxy
- → Dwarf AGN first systematic search: 74 eROSITA X-ray selected sources, 15 years *Fermi*-LAT data
 - \rightarrow **Key finding:** Intriguing $\sim 3\sigma$ soft spectral excess at $\Gamma \sim 3.5$ in joint likelihood
- → Future: eROSITA full survey (~1,350 dwarf AGN), multiwavelength follow-up, next-generation instruments (CTA, AMEGO-X)
- → results to appear following ICRC, stay tuned for arXiv:2507.xxxxx!

The littlest galaxies continue to provide the biggest insights into dark matter!